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ABSTRACT 

This paper presents a new method of approximation of effective bandwidths for CAC function in ATM 
networks. The accuracy of the  Extended Effective Bandwidths method proposed in the paper was examined 
through simulation experiments.                

 
 

INTRODUCTION 

One of the important problems in designing ATM 
systems is implementation of Connection Admission 
Control (CAC). The stringent performance 
requirements for ATM networks (e.g. 10-9 cell 
blocking probabilities) have led several authors to 
approach the important problem of connection 
admission control via asymptotics for steady state 
distributions in queueing models [1]. The idea is to 
consider the steady-state blocking probability p(x) 
as the buffer size x gets large. For Markovian traffic 
processes (MP), it is possible to show that 

p x e x( ) ∼ −α η   as  x → ∞               (1) 
or the weaker results 

log ( )p x x∼ −η  as  x → ∞               (2) 
where x runs through the integers (number of cells) 
η is a positive constant called the asymptotic decay 
rate and α is a positive constant called asymptotic 
constant.   
An appealing simple approximation based on the 
asymptotics in (1) or (2)  is 

p x e x( ) ≈ −η                         (3) 
Approximation (3) can be a reasonable substitute for 
(1) if we are primarily interesed in the buffer size 
producing a target blocking probability, rather than 
the blocking probabilities themselves. For example, 
if we seek xp such that p(xp) = p, and apply (1) for 
this purpose, then we get 

x p
p =

−ln lnα
η

                    (4) 

When p is very small and α is not to different from 
1, then ln α - ln p will be well approximated by  
-ln p. Then (3) will be a good approximation for 
determining xp.  
Approximation (3) is appealing because the 
asymptotic decay rate η is relatively easy to 
determine, exactly or approximately, while the 
asymptotic constant α in (1) is not. Approximation 
(1) is also appealing because under (3) the 

bandwidth requirement of sources is additive, so 
that (3) leads to a relatively simple algorithm for 
admission control using a concept of ”effective 
bandwidths” [1]. Hence, we call (3) the effective 
bandwidth approximation (EB). 

On the other hand recent traffic measurement 
studies from a wide range of working packet 
networks have convincingly established the 
presence of significant statistical features that are 
characteristic of fractal traffic processes (FP), in the 
sense that these features span many time scales. Of 
particular interest in packet traffic modelling is a 
property called long-range dependence (LRD) 
which is marked by the presence of correlations that 
can extend over many time scales. Leland et al. [2] 
observed the Ethernet traffic seems to look the same 
in the large scales (min, h) as in the small (s, ms). A 
number of quantities have been evaluated to 
demonstrate the invalidity of the Markovian models: 
Index of dispersion for counts (IDC) is given by 
the variance of the number of arrivals in an interval 
of length t divided by the mean number of arrivals:  
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where Nt is the number of arrivals in an interval of 
length t. The IDC has been defined in order that a 
Poisson process the value of IDC(t) = 1 for all t. We 
see in [2] that for FP IDC(t) increases monotonicaly 
throughout a time span of 6 orders of magnitude. In 
contrast all finite MP have indices of dispersion to 
fixed values over time scales. 
Hurst Parameter - Let X = (Xt: t = 0,1,2,...) be a 
covariance stationary stochastic process and define 

X
m
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km m km

( ) ( ... ),= + + ≥− +
1 11      (6) 

The process X is called second order self-similar 
with self-similarity parameter H = 1-β/2 if for all m 
= 1,2,..., var(X(-m))= σ2m-β with 0<β<1 (σ - variance 
for m=1). Estimating β, it is possible to deduce 



 

Hurst parameter H. β is given by the slope of the 

diagram log var( )( )

10 2

X m

σ
 to log10(m). 

Table 1 compares main differences between the 
Markovian Process and the Fractal Process.  
Table 1 A comparison of  some statistic parameters 

of MP and FP 
 

Parameter MP FP 
var(X(m)) ~ m-1, m → ∞ ~ m1-α, m → ∞ 

IDC const,  T → ∞ ~ T2-α,  T → ∞ 
H 0.5 > 0.5 

 
where α is an parameter of Pareto distribution which 
is discussed in next Section. 

Willinger et al. [3] revisit the Bellcore Ethernet 
LAN traffic and extract from the aggregate traffic 
the traces generated by individual source-destination 
pairs. Statistical analysis of these traces reveals that: 
• the traffic generated by each pair is consistent 

with an ON/OFF model; 
• the distribution of the sojourn times in the 

ON/OFF states can be accurately described using 
Pareto-type distributions which exhibit infinite 
variance. 

Thus, the examined traffic data are not only 
consistent with self-similarity of aggregate packet 
traffic, but they are also in full agreement with given 
below explanation. It is reasonable to assume, that 
LAN traffic measured on Ethernet can be examined 
at three major levels of behaviour corresponding to 
certain resolution of time: 
• The connection level describes the human 

behaviour. The connection duration is 
determined by the file sending time and file 
length. In tactical LAN networks both parameters 
are additionally determined by specific 
requirements and limitations. The duration 
between calls on an Ethernet is typically in time 
range of 10 - 1000 s. 

• The TCP/IP level describes the transport level. 
The traffic sent on the network depends of an 
uncontrollable number of parameters but the 
major influences on it is the network behaviour. 
The transmission duration of a TCP/IP packet 
varies typically from 0.01 - 10 s. 

• The Ethernet network level where the sent traffic 
depends essentially on the local traffic flowing 
on the network. The time between sending and 
not sending a frame is typically in the range 1 - 
50 ms. 

Above considerations come to conclusion that 
Classic Effective Bandwidth Approximation (CEB) 
done by equation (3) may be not adequate in case of 
FPs. This paper describes a concept of  Extended 
Effective Bandwidth Approximation (EEB) which is 
formulated especially for implementation CAC 
function in ATM networks with self-similar traffic. 
The rest of the paper is organized as follows. In 
Section 2 the proposed EEB method is discussed. 
Section 3 gives a comparison of both CEB and EEB 
approximations for different traffic mixes. Section 4 
concludes with a summary of the paper. 

EEB METHOD 

When the number of traffic sources in the system is 
increased, then parameter α in (1) can be very small 
or very large (for bursty sources, α is typically less 
than 1), and CEB approximation in (3) is much too 
conservative; e.g., α can be 10-5 or less. Then CEB 
method can underestimate the number of sources the 
system can handle by a factor two or more. 
Since CEB approximation performs well in some 
parameter regions, above analysis does not 
completely rule out this method. Moreover, it may 
still be possible to exploit asymptotic results in a 
different way to obtain an effective simple CAC 
algorithm [4].  

For detailed examination of the problem 
discussed in the paper, as a surrogate for the steady-
state blocking probability p(x) in a system with 
capacity x, we actually consider the tail probability 
P(W > x), where W is the steady-state waiting time 
until beginning service in an infinite-capacity 
system. When the service times are deterministic 
with mean 1, as is the case with ATM cells, the 
steady-state waiting time coincides with the steady-
state queue length or buffer content. We are thus 
approximating the steady-state blocking probability 
in the finite-capacity system by the steady-state 
probability that the buffer content at an arrival 
epoch exceeds the capacity level in the finite-
capacity system. In particular, analysis is based on 
the Gii

n

=∑ 1
/ G / 1 queue, which has a single server, 

unlimited buffer, FIFO discipline and i.i.d. service 
times that are independent of a superposition arrival 
process. The complicated feature of this model is the 
arrival process; it is the superposition of n 
independent general arrival process. Our analysis 
methods permit these component arrival process to 
be both Batch Markovian Arrival Processes 
(BMAPs), as in [5] or Batch Self-Similar Arrival 
Processes (BSSAPs), as in [6]. Since superposition 



 

of independent BMAPs are again BMAPs, and 
superposition BSSAPs are again BSSAPs, it suffices 
to consider both the BMAP/G/1 and the BSSAP/G/1 
queues. The proposed method permit comparison of 
effectiveness of both CEB and EEB approximations 
examined in experiments.  

In the next step we have developed algorithms 
for calculating the tail probabilities P(W > x) 
exactly and refined three-term approximation 
proposed for CEB method in [7] of the form 

P W x e e ex x x( )> ≈ + +− − −α α αη η η
1 2 3

1 2 3     (7) 
where α1 and η1 are the asymptotic constant and 
asymptotic decay rate in (1).  

For EEB approximation, we use an exactly 
self-similar model, based on Fractional Brownian 
Motion (FBM) which has been proposed by Norros 
[8]. In this model the total amount of traffic arriving 
to a system until time t is given by 
 

A t mt cmZ t( ) ( ),= +     t ∈ −∞ ∞( , )      (8) 
where Z(t)  is normalized FBM characterized by the 
self-similarity parameter H ∈ (0.5, 1). Norros uses a 
scaling analysis to derive analytic expression with 
regards to the Quality of Service (QoS) criteria. In 
particular Norros shows that the complementary 
queue distribution is asymptotically bounded by a 
stretched exponential or Weibull form 

P L x ae x( ) ,> ≈ −γ β

     0 1≤ ≤β           (9) 
where γ = f(c, m, H) and  β = 2 - 2H. This form of 
the queue length distribution for H > 0.5, is much 
heavier than the exponential decay predicted by 
traditional model. 
According to (7) and (9) we propose refined three-
term approximation for EEB method of the form 
 

P L x a e a e a e( )> ≈ + +− − −
1 2 3

1 2 3ζ ζ ζ   (10) 
 
where a1 are the asymptotic constant in (9), and 
 

ζ γ β
n n x= −                       (11) 

 
Using our exact numerical algorithms for both the 
BMAP/G/1 queue and the BSSAP/G/1 queue, we 
have investigated the approximations in (1), (3), (7) 
and (10). 

SIMULATION EXPERIMENTS 

In this section we consider properties of both CEB 
approximation and EEB approximation in case 
when two kinds of ON/OFF sources produces the 
traffic offered to the examined system. These traffic 
sources are described as follows: 

Markovian source (MS) - This ON/OFF source has 
exponentially distributed on and off periods. During 
the on periods, arrivals occur according to a Poisson 
process; during the off period there are no arrivals. 
Each MS is characterized by three parameters, the 
mean on period ωMS, the mean off period ξMS and 
constant rate rMS during the on period.  
Fractal source (FS) - Each FS can be in one of two 
states, active or idle. In active state, a source 
generates cells at a constant rate rFS. In the idle state, 
a source does not generate cells. The time spent by 
FS source in active state is the random variable τ 
which has distribution such that  

{ }P x xτ αα> ≅ → ∞− ,   x ,   1 < < 2       (12) 

Equation (12) means that τ has a Pareto-type 
distribution with a finite mean ωFS and infinite 
variance. The off period of the FS is exponentially 
distributed with the mean period ξFS. 

Figure 1 shows a set of four variance-time plots 
which were obtained by plotting log{var[X(m)]} 
against log m, where for each m = 1, 2, ..., the 
aggregated process X(m) = {X(m)

k} is obtained by 
averaging the original traffic process X over 
nonoverlapping intervals of size 10m miliseconds. 
The plot compares measured traffic (data from the 
delta modulation voice sources and Bellcore LAN 
traffic) with simulated traffic generated by number 
of the MSs as well as the FSs.  
 

 
Fig.1. Variance-time plot for different traffic traces 
As depicted in Figure 1, short-range dependent 
processes (generated by voice codecs and CSs) are 
characterized by an asymptotic slope of -1. For both 
self-similar processes (Bellcore LAN traffic and FSs 
traffic), the asymptotic slope parameter is readily 
estimated to be about - 0.45, resulting Hurst 
parameter H estimate of H ≈ 0.78. The result of this 
experiment confirms good properties of the 
simulation tools which are used in the next phase of 
experiments. This phase first repeats examination of 
refined three-term approximation proposed for CEB 



 

method in [7]. Obtained results are presented in 
Figure 2. 

 
Figure 2. A comparison of approximations and exact 
method of the buffer overflow for pure Markovian 

traffic case 
Figure 2 displays the exact tail probabilities  
P(W > x) for x ≤ 600 and the approximations (1), 
(3), (7) and (10). Note that indeed α in (1) is very 
different from 1 (α ≈ 1.5 x 10-5). The plot from 
Figure 2 indicates that (1) and (7) are still in error 
by a factor 4 at x = 600. This error is relatively 
small, though, compared to the error in (3) which is 
by factor of 105. The proposed EEB approximation 
obviously is even significantly better than all other 
compared methods.  
In next experiment all approximations studied in the 
paper were compared for the case of pure fractal 
traffic which was generated by 12 FSs. The 
parameters of these sources are chossen (as in the 
case above), so that 

P(W > 600) ≈ 10-9                            (13) 
For pure self-similar traffic the EEB approximation 
preserve small constant error for all values of the 
buffer length. In this case, the buffer overflow is 
greatly underestmated by both (1) and (7) 
approximations. The EB (3) formula predicts 
exactly the cell losses for buffer length x  ≈ 550, but 
for other x values significantly overestimates.  

CONCLUSIONS 

The Extended Effective Bandwidth approximation is 
proposed in the paper. The simulation experiments 
shows that EEB method is fully applicable for ATM 
networks with Markovian traffic as well as self-
similar traffic. The practical implementation of the 
proposed method is easy and relies on having only 
three statistical parameters of each traffic source 
model. The evaluation on real life traffic streams 
shows, that the RMS error was usually less than half 
an order of magnitude. The present results can thus 
be used as a starting point for further studies of 

effective bandwidth methods in ATM systems. 
However, as with any approximation further tests 
are always required. 
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